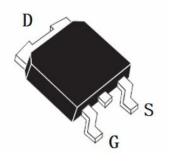


N-Channel Enhancement Mode Power MOSFET

Description

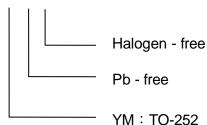
ACE7403B uses advanced trench technology and desgin to provide excellent R_{DS(ON)} with low gate charge. It can be used in a wide variety of applications.

Features


- $V_{DS} = 30V, I_{D} = 50A$
- $R_{DS(ON)1}@V_{GS}=10V$, $I_{DS}=25A$, TYP $8m\Omega$
- $R_{DS(ON)2}@V_{GS}=5V$, $I_{DS}=20A$, TYP $10m\Omega$

Absolute Maximum Ratings $@T_A=25^{\circ}C$ unless otherwise noted

Parameter		Symbol	Ratings	Unit	
Drain-Source Voltage		V _{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current (Continuous) *AC	TA=25°C		50	А	
	TA=100°C	l _D	35		
Drain Current (Pulse) *B		I _{DM}	140	Α	
Power Dissipation	TA=25°C	P_{D}	60	W	
Operating Temperature/ Storage Temperature		T _J /T _{STG}	-55~175	°C	


Packaging Type

TO-252

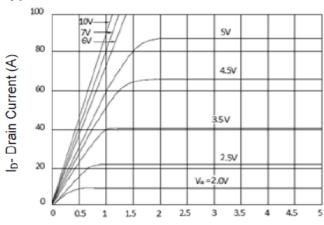
Ordering information

ACE7403BXX + H

N-Channel Enhancement Mode Power MOSFET

Electrical Characteristics @TA=25℃ unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
Static									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	30	33		V			
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30V, V_{GS} = 0V$			1	μΑ			
Gate Threshold Voltage	$V_{\rm GS(TH)}$	$V_{GS} = V_{DS}, I_{DS} = 250 \mu A$	8.0	1.1	1.4	V			
Gate Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V			±100	nA			
Drain-Source On-state	$R_{DS(on)}$	$V_{GS} = 10V, I_{D} = 20A$		8	11	mΩ			
Resistance		V _{DS} = 5V, I _D = 20A		10	16				
Forward Transconductance	g_{FS}	V _{DS} = 5V, I _D = 20A	15			S			
Diode Forward Voltage	V _{SD}	I _{SD} = 25A , V _{GS} =0V		0.85	1.2	V			
Diode Forward Current	I _S				50	Α			
Switching									
Total Gate Charge	Q_g	V _{DS} =10V,I _D =25 V _{GS} =10V		23		nC			
Gate-Source Charge	Q_gs			7		nC			
Gate-Drain Charge	Q_gd			4.5		nC			
Turn-on Delay Time	td (on)	V_{DD} =15V, V_{GS} =10V, R_{G} =1.8 Ω , I_{D} =20A		10		ns			
Turn-on Rise Time	t _r			8		ns			
Turn-off Delay Time	$t_{d(off)}$			30		ns			
Turn-Off Fall Time	t_f			5		ns			
Dynamic									
Input Capacitance	C_{iss}	V _{DS} =15V,V _{GS} =0V, f=1.0MHz		2000		pF			
Output Capacitance	C_{oss}			280		pF			
Reverse Transfer Capacitance	C_{rss}			160		pF			


A: The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The value in any given application depends on the user's specific board design.

- B: Repetitive rating, pulse width limited by junction temperature.
- C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

N-Channel Enhancement Mode Power MOSFET

Typical Performance Characteristic

Vds Drain-Source Voltage (V)
Figure 1 Output Characteristics

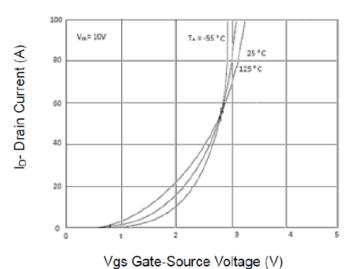


Figure 2 Transfer Characteristics

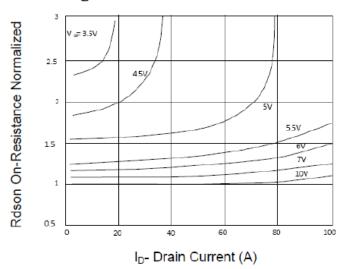


Figure 3 Rdson- Drain Current

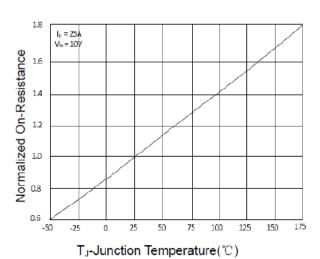
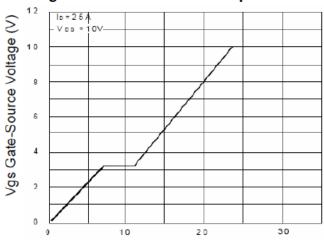
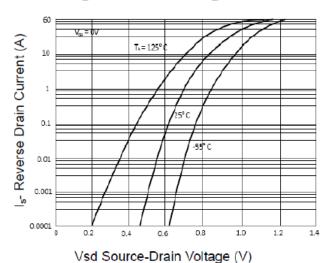




Figure 4 Rdson-JunctionTemperature

Qg Gate Charge (nC)
Figure 5 Gate Charge

vsd Source-Drain voltage (v)

Figure 6 Source- Drain Diode Forward

3

N-Channel Enhancement Mode Power MOSFET

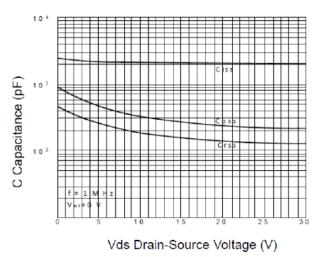
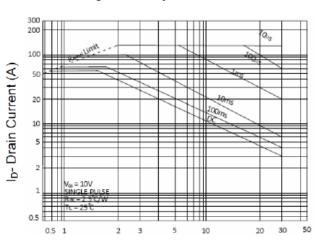
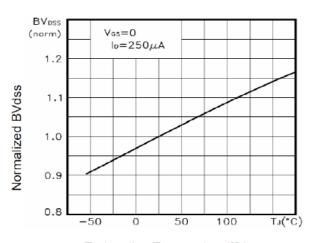
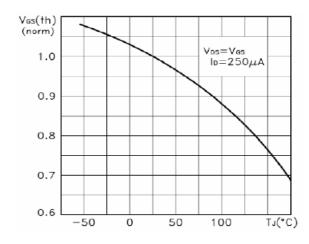
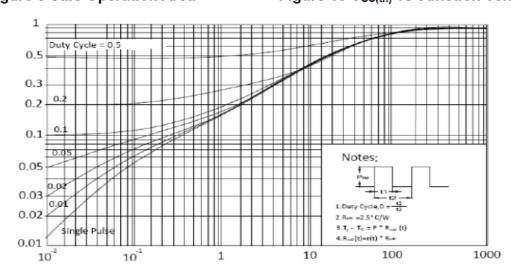




Figure 7 Capacitance vs Vds



Vds Drain-Source Voltage (V)
Figure 8 Safe Operation Area

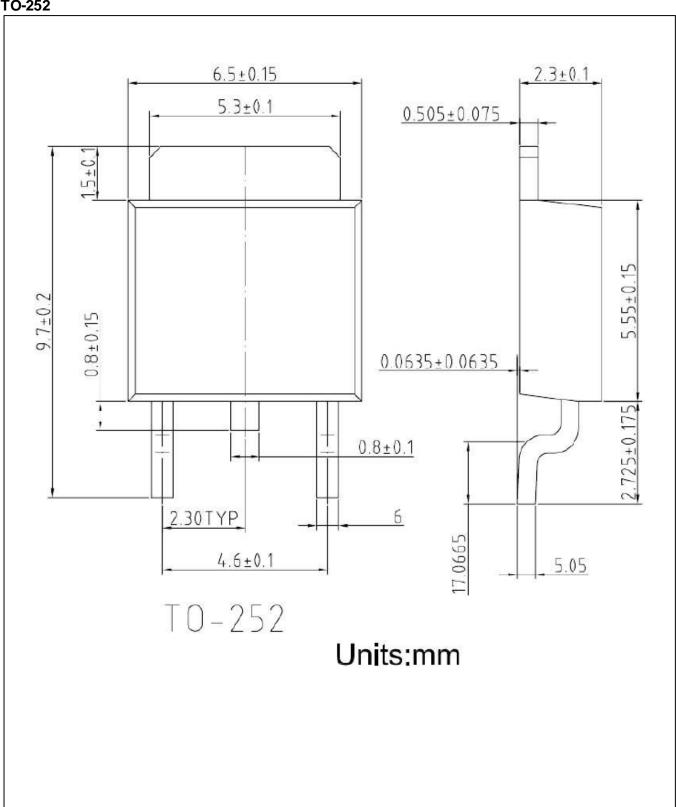
T_J-Junction Temperature(℃)


Figure 9 BV_{DSS} vs Junction Temperature

T_J-Junction Temperature(℃)

Figure 10 V_{GS(th)} vs Junction Temperature

Square Wave Pluse Duration(sec)


Figure 11 Normalized Maximum Transient Thermal Impedance

N-Channel Enhancement Mode Power MOSFET

Packing Information

TO-252

ACE7403B N-Channel Enhancement Mode Power MOSFET

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/