

ACE577C

40V 150mA Low Consumption Linear Regulator

Description

ACE577C series is a group of positive voltage output, low power consumption, low dropout voltage regulator. It can provide 150mA output current when input / output voltage differential drops to 400 mV (Vout = 5V), and it also provides fold back short-circuit protection, thermal protection and output current limit function. The very low power consumption of ACE577C (Iq = 2.5 uA) can greatly improve natural life of batteries.

ACE577C can provide output value in the range of 1.2V~5.0V in 0.1V steps. It also can customize on command.

ACE577C includes high accuracy voltage reference, error amplifier, and current limit circuit and output driver module.

ACE577C has well load transient response and good temperature characteristic, And it uses trimming technique to guarantee output voltage accuracy within±2%.

Features

Low Power Consumption: 2.5uA(Typ.)

Maximum Output Current: 150mA

Small Dropout Voltage

400mV@100mA (Vout=5V)

Input Voltage Range: 3V~40V

Output Voltage Range: 1.2V~5.0V (Vout>5V customized)

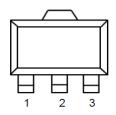
Highly Accurate:±2%(±1% customized)

Output Current Limit: 180mA

Application

- Battery Powered equipment
- Power Management of MP3 \ PDA \ DSC \ Mouse \ PS2 Games
- Reference Voltage Source Regulation after Switching Power

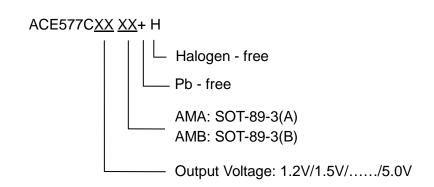
Absolute Maximum Ratings


Parameter	Value			
Max Input Voltage		48V		
Operating Junction Temperature	125 ℃			
Ambient Temperature(Ta)	-40 °C -85°C			
Power Dissipation (P _D @Ta=25°C)		500mW		
Package thermal resistance(θ_{JC})	SOT-89-3	25 ℃/W		
Package thermal resistance(θ _{JA})		90°C/W		
Storage Temperature(Ts)		-40°C -150°C		
Lead Temperature & Time		260°C,10S		

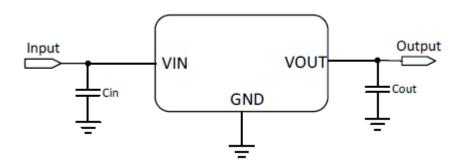
Note: Exceed these limits to damage to the device.

Exposure to absolute maximum rating conditions may affect device reliability.

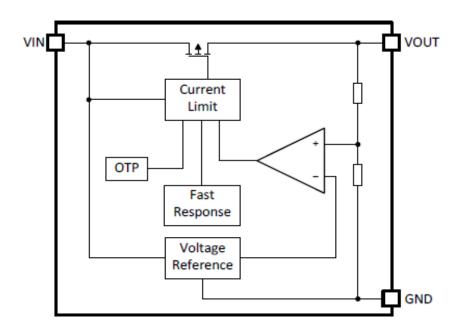
Packaging Type


SOT-89-3

Pin Configuration


SOT-89-3(A)	SOT-89-3(B)	NAME	Description
1	2	GND	Ground
2	3	Vin	Supply voltage input
3	1	Vout	Output voltage

Ordering Information


Typical Application

Recommended Work Conditions

Item	Min	Max.	Unit
Input Voltage Range	3	40	V
Ambient Temperature	-40	85	$\square^{\circ}\!$

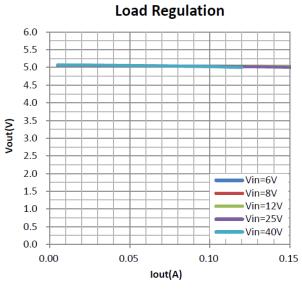
Block Diagram

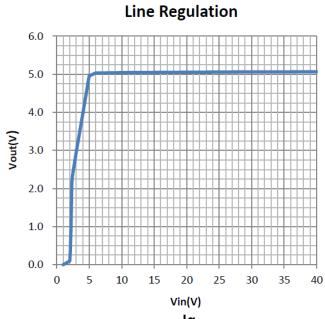
Explanation

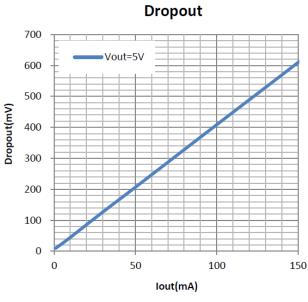
ACE577C is a series of low dropout voltage and low power consumption regulator. Its application circuit is very simple, which only needs two outside capacitors. It is composed of these modules: high accuracy voltage reference, current limit circuit, error amplifier, output driver and power transistor.

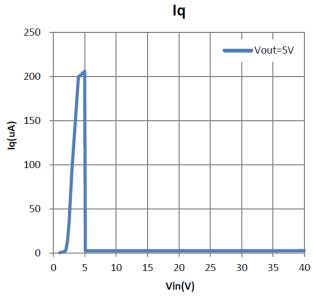
Current Limit module can keep chip and power system away from danger when load current is more than 180mA.

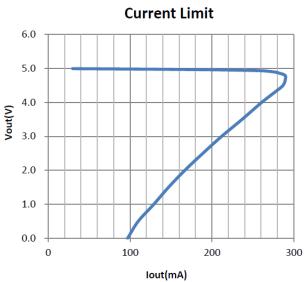
ACE577C uses trimming technique to assure the accuracy of output value within±2%, at the same time, temperature compensation is elaborately considered in this chip, which makes ACE577C's temperature coefficient within ± 100 ppm/°C $^{\circ}$

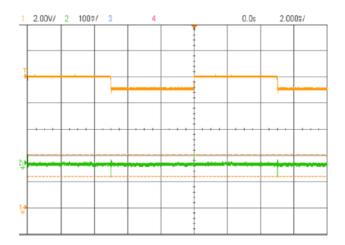

Electrical Characteristics

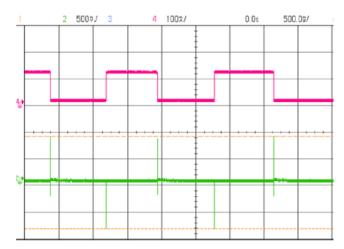

(Test Conditions: Cin=1uF, Cout=1uF, Ta=25°C, Unless Otherwise Specified)


Parameter		Symbol	Conditions	Min	Тур	Max	Units
Input Voltage		Vin		3		40	V
Output Voltage	Vout>1.5V	- Vout	Vin-Vout=1V 1mA≤Iout≤30mA	Vout x0.98	Vout	Vout X1.02	V
	Vout≤1.5V			Vout -0.03		Vout +0.03	
Maximum Output Current		lout(Max.)	Vin-Vout=1V	150			mA
Input-Output Voltage Differential		Dropout Voltage	lout=100mA, Vout = 5V		400		mV
Line Regulation		□ΔVout 	lout=10mA, 4V≤Vin≤40V		0.2	0.3	%/V
Load Regulation		∐∆Vout	Vin=Set Vout+1V 1mA≤lout≤100mA		20	40	mV
Quiescent Current		lq	Vin=Set Vout+1V		2.5	5	uA
Output Voltage Temperature Coefficient		□ΔVout □ΔT · Vout	lout=10mA		±100		ppm/°C
Thermal Shutdown					130		°C



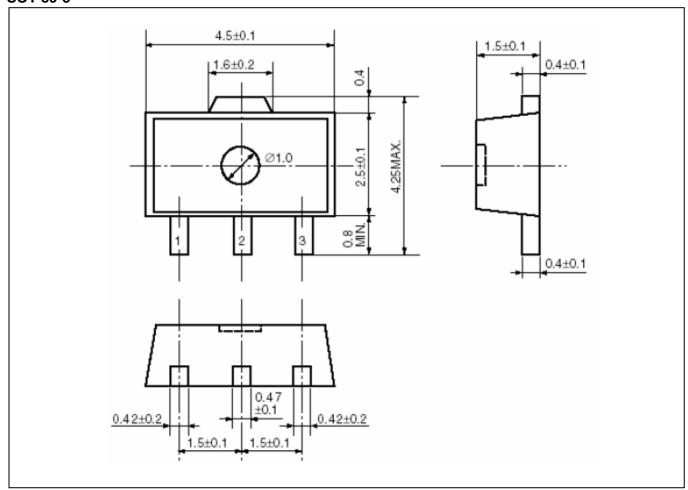

Typical Performance Characteristics





Line transient response Vin=6V~7V, lout=10mA Ch1—Vin, Ch2—Vout

Load transient response Vin=12V, lout=10mA~100mA Ch2—Vout, Ch4—lout



ACE577C

40V 150mA Low Consumption Linear Regulator

Packing Information

SOT-89-3

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Technology Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/